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ABSTRACT

A common model for the changes over time of the price (or sometimes the
logarithm of the price) of a commodity is the random walk model. This
is a Markov model which supposes that the change in price in any time
period is a random variable, independent of the past, and having a given
distribution F . In this note, we propose a generalized model in which
the distribution of price change at any time depends upon the "environ-
mental state" at that time. That is, we suppose that if S and Y

represent the price and the environmental state at time n then, given
S nS - S is a random variable with distribution Fi We also.j&.n !, n+l n

suppose that the environmental state changes in a Markovian fashion. An
application of this model to a stock option example is presented.
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A RANDOM WALK SUBJECT TO A RANDOMLY CHANGING ENVIRONMENT

by

Sheldon M. Ross

0. INTRODUCTION

A common model for the changes over time of the price (or sometimes

the logarithm of the price) of a commodity is the random walk model. This

is a Markov model which supposes that the change in price in any time

period is a random variable, independent of the past, and having a given

distribution F . Whereas such a model might be appropriate over a short

time span, it does not seem realistic over a larger time frame for it sup-

poses that the future will behave as does the present in the sense that the

change distribution is fixed. More sophisticated models suppose that, for

each n , the price change from the nth to the (n + 1)st time period

has its own distribution F , and they sometimes even allow this distribu-

tion to depend upon the price during the nth time period. However, these

models seem even less applicable than the straight random walk model for

*they assume that at time t - 0 an individual would be knowledgeable about

the price change distribution at time n .

In this note, we propose a model in which the distribution of price

change at any time depends upon the "evnironmental state" at that time.

That is, we suppose that if S and Y represent the price and the en-. n n

vironmental state at time n then, given Y. = i , Sn+ 1 - Sn is a random

variable with distribution Fi . We also suppose that the environmental

state changes in a Markovian fashion.

In Section 1, we present the specifics of the above model and in Section

2 we compute, conditional on initial conditions, the mean and variance of
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the price at time n . As, in most applications, the "environmental state"

will be unobserved, we show, in Section 3, how to derive its posterior dis-

tribution at any time. In Section 4, a stock option example is considered.
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' 1. THE MODEL

Let S denote the price and Y the environmental state at time n* n n

where the set of possible values of Y are taken to be the nonnegativei- , n

V. integers. We suppose that for a given environmental state i there is a

joint distribution for the next environmental state and the change in price.

That is,we suppose there are transition probabilities P and a family of
ii

distributions F such that
ii

PIS n+1 - Sn < x Y Yn+1 j [Yn i , n-!' ..... YO S n' S SO}

- Pi F i (x)

In words, if the present price is s and the environmental state is i , then

the environmental state will change to j with probability P and if

this occurs the new price will be s plus a random variable having distribu-

tion F . Of course, it is not necessary for us to think in terms of the

environment changing first. We can also imagine that, given S = s , Y = i ,n n

the price change will have distribution Fi defined by

.
°

Fi PtjFij

and given that the price change is x the next environmental state will be

j with probability Pi (x) given by

P dF (x)

" m PijdFij (x):'- j

9. 4
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Let

U fxdF i W--- ° 1(i) = x)

2  2
a"(i) = (x - u(i) dF(X)

denote the mean and variance of the price change for environmental state

i . We first note that, in the long run, the commodity's price grows as

* a weighted average of the P(i)

Proposition 1:

Assume that the Markov chain with transition probabilities Pij

i,j 1 0 is ergodic and let {i i > 01 denote the stationary probabil-i w -i

ities. Then, with probability 1,

S
J! niu(i) as n- •

i

Proof:

Let N(J,n) denote the number of time points k , 1 < k < n , for

which Yk-l j " Letting Xn - Sn  S Sn 1  n > 1,we have that

S ~S +~n-k-l
S So + Xk

.X%

j k:Yk-l=J

1<kcn

Hence,

n +  Xk(, N(1.n)
I Xk/N(i~n):y n" n

1 <k<n

% ....**'I* , * . .. . - . . . "o •'
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Now given Yk j Xk has, independent of the past, distributionF

and so by the strong law of large numbers

k:Y Xk/N(J~n) -u i as n

k:YlmJ

1<k<n

Also, by the strong law for renewal processes,

N(1n) I1r
n Eftime between visits to i
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2. MEAN AND VARIANCE OF S

* Let us suppose that So  s and YO i are given and let X =

nn

*Sn -Sn_ 1 , n l _.• Hence,

n x~ +s8

n

As E[Xj J-(YY J1 e.se ha

n

-J4

!I i

where the Pi are the j stage transition probabilities of the Harkov
ik

chain [ jk

To compute Var (S), we use

nn

Var (S s Var X(Y

(2.1)

n
M I Var (Xp + 2 (Co (XeXus

iJ<t

4

- .-- - .
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By the conditional variance formula,

0 Var (X fi E[a 2 (YJ-1 + Var [(Y(j - 1))]

(2.2)

I p ~j-l a2(k) + I PJk 1 (I(k)) 2 - E 2(X.

k k k i

Also, we have for J <2.

E[X E[X X~ Y k]P J-1

ExXX2.  k ~ F() -

k ~fX lxi J- *Y 1  k k~~~)ik~

To compute E[X, I X1 , Yj_]J , we condition on Y thusly:

E[X . X j -x, _- k]- ( x) P xJ-1 •
m r

Hence, for j < k

(2.3) E[X X k x I' P(X) I - -j- l (r)dF( -1

LJ 9L k (xr mr k ()ik

where P km(X) is given by (1.1). Var (S n ) can now be computed from (2.1),

(2.2), and (2.3) by using

E[XJ - i- k p j.(k)
k

Remark:

As can be seen by the above, the formula for Var (S) is quite involved

when the number of environmental states is not quite small.

• °...- -. 9 .to ° •. - . o • . . .
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3. DISTRIBUTION OF THE STATE OF NATURE
S

In most applications, the state of nature will never be explicitly

observed. In such a case, we will suppose that a prior distribution is given

for the initial state of nature. For instance, suppose

P{Y = i} = P , PO =S Pi > 0 i

If at any time the probability distribution of the current state of nature

is P = (PI, P ...) and the change in the commodity's price is observed to

equal x ,then the next state of nature is P(x) = (Pl(x), ... ) where

. . PdF i WP) Pi* W

P.(x) =

ii P PidFi(x)
n1

and where PJ i(x) is given by (1.1).

. 7

p.I
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4. A STOCK OPTION EXAMPLE

Consider a stock whose price changes in accordance with the model of

Section 1 and suppose that we own an option to buy one share of this stock

at any time within N days for a fixed price c . We need never exercise

the option but if we do at a time when the stock's price is s then our

profit is s - c . Under the assumption that the environmental state is

observable, we are interested in the strategy that maximizes the expected

profit.

If we let V (s,i) denote the maximal expected profit when there aren

n days to go for the exercising of the option, the present price is s and

the environmental state is i , then V satisfies the optimality equationn

V (s,i) - max ~s - c , P~ V 1 (s + x~i)dFij(x)~

with the boundary condition

V0 (s,i) max {O,s - c}

Lemma 2:

(i) Vn (s,i) - s is decreasing in s , for fixed i

(ii) For fixed i , V (si) is increasing, continuous, and convex in sn

and is increasing in n

Proof:

Part (i) follows by induction. It is immediate for n - 0 and so

assume if for n- 1. Now

9.? . . . ..... * .. 4
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Vn(s,i) - s = max -c , ij [V n-l (s + x,j) - (s + x)]dFij(x) + U(i)

By the induction hypothesis, Vn-l(s + x,j) - (s + x) is, for each x

decreasing in s and so (i) follows. Part (ii) also follows by induction.

For instance, by the induction hypothesis, and the optimality equation,

V (s,i) is the maximum of two functions, both convex in s , and so is
n

itself convex in s .

Proposition 3:

The optimal policy is as follows: There are numbers s(n,i) , in-

creasing in n , n > 1 , such that the option should be exercised when

there are n days to go, the price is s , and the environmental state is

i if and only if s > s(n,i)

Proof:

In the situation given, it follows from the optimality equation that

it is optimal to exercise the option if

SVn (s,i) - s = -c

Let

s(n,i) min {s : Vn (s,i) - s = -c}

• . where we take s(n,i) to equal if the above set is vacuous. By Lemma

2, we have for all s > s(n,i)

V n(s,i) - a < Vn (s(n,i)) - s(n,i) = -c

*-,. ". . . . . ." ..' ;i, i.". ii. i. . .. i i i
I
- i ."-" ." + L '. i- 2.. . ,-.+i .+. . . .



implying that one should exercise the option in state (s,i) when n days

remain. That s(n,i) increases in n follows from V (s,i) being in-

creasing in n which is obvious. I

Remark:

It is easy to verify that if p(i) > 0 , then s(n,i) = •

To obtain conditions under which s(n,i) increases in i , we need

the following definition.

Definition:

The distribution F is said to be more variabZe than the distribution

G if ff(x)dF(x) > ff(x)dG(x) for all increasing convex functions f

Theorem 4:

Suppose that the price change when in environmental state i is in-

dependent of the next environmental state. That is, suppose that Fi(t)

Fij(t) does not depend on j . Then if

(i) Fi increases in variability in i

and

(ii) P increases in i for all k
j-k

then Vn (s,i) , and thus s(n,i) , is increasing in i

Proof:

By induction. It is immediate for n = 0 and so assume for n - 1

.... .: . ..--. . - .. . ..... .-. .-.-.- . . .... -... .. ..:. - ... . _ . .

" * % ,' *." -" ".,'" '*- "". ..- "". " " - -" ." -" "-" " " -" ."• .""' " .' "
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Now let
V.

p.
K h(i,j) f Vn- (s + x,J)dFi(x)

and note that, for fixed J , it follows from the monotonicity and convexity

in x of V (s + x,j) (from Lemma 2) and condition (i) of the hypothesis
n-i

that h(i,j) increases in i . Therefore,

Si+l,j h(i + 1,J) > P +l,jh(i,j)

SPi,jh(i,J)

where the second inequality follows from the induction hypothesis, which

-I implies that h(i,j) increases in j , and hypothesis (ii) which is

equivalent to the condition that I Pijk(J) increases in i whenever k(j)

increases in j . Hence, P Pijh(i,J) increases in i and the result

follows as

Vn(s,i) - max s - c , Pijh(ij) .II

Remark:

The above example was considered by Taylor for the case of a single

environmental state.

,~~~~~~~~~~.".[..".. .. i'- "..-.-..... .-.... ,.. .-...- . . ...... ,,,.""
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